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S TAT I S T I C A L E V I D E N C E

Recurring problems occur in sampling evidence because courts are generally reluctant to

delve into the statistical theory underpinning the legitimacy of an inference from sample to

population, say attorneys Stephen Blacklocks and Michael Kruse. Nevertheless, recent de-

cisions concerning the drugs Bextra and Celebrex have shown a renewed focus on a central

component of such an inference—the concept of a confidence interval. The authors describe

the importance of CIs in the inference from sample to population, and warn against a num-

ber of common fallacies.

Scientific Evidence and Confidence Intervals: Theory and Fallacy

BY STEPHEN BLACKLOCKS AND MICHAEL KRUSE

S cientific evidence takes many different forms, of
course. But one particular type of scientific evi-
dence causes recurring problems in courtrooms —

evidence based on sampling. To study populations, sci-
entists often study samples of those populations. Thus,
for example, to determine whether exposure to a sub-
stance X causes injury Y, an epidemiologist might study
a sample population exposed to X and another sample
population not exposed to X, to see whether persons ex-

posed to X have a higher risk of developing Y than per-
sons not exposed to X. Similarly, to determine whether
a corporation’s minority employees have been discrimi-
nated against, a social scientist might study whether a
sample of that population has been discriminated
against.

Whenever a sample of a population is studied, the
question arises of whether the results drawn from the
sample are probative of the population at issue. Even if
it is granted that the study was properly done — the
sample was randomly selected, potentially confounding
factors were properly accounted for, etc. — what can
the sample study tell the trier of fact about the popula-
tion as a whole? This question is statistical — and not
just in the sense that it involves numbers. Rather, the
core of the discipline of statistics is the analysis of how
results from studies of samples are indicative of popu-
lations: as one textbook puts it, the primary purpose of
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statistics concerns the ‘‘inference from a sample to the
whole population.’’1

Courts are generally reluctant to delve into the statis-
tical theory underpinning the legitimacy of an inference
from sample to population. Nevertheless, recent deci-
sions in litigation concerning the non-steroidal anti-
inflammatory drugs Bextra and Celebrex have shown a
renewed focus on a central component of such an infer-
ence — the concept of a confidence interval (CI).2 This
article describes the importance of CIs in the inference
from sample to population, and warns against a number
of common fallacies.

Confidence Intervals and Tests
of Statistical Significance

The basic problem in drawing an inference about a
population from a sample is in accounting for the effect
of random sampling error. Take a simple sampling ex-
periment — tossing a coin to determine whether the
coin is fair. The coin is fair if the probability of its com-
ing up heads is 0.5, but if we toss the coin 50 times and
it comes up heads only 23 times, we will not likely con-
clude that it is not fair. Rather, we will likely blame the
discrepancy on random sampling error — that is, some-
thing (we do not know what) caused the experiment to
go slightly wrong. This is a general problem that infects
any inference from a sample to a population: we have
no reason to believe that the sample study avoided sam-
pling error, and so have no reason to think the sample
result precisely equals the population value.

But even though we know the sample result will al-
most never equal the population value, we can conclude
with varying degrees of confidence that the sample re-
sults will fall within certain regions around the popula-
tion value. Imagine a person shoots a gun at a fixed tar-
get 100 times. We have no way of knowing where ex-
actly her next shot will land. But if we know her general
tendencies as a shooter, we can accurately predict how
many of those 100 shots will fall within a particular dis-
tance of the target. For example, she may put 60 per-
cent of her shots within 3 inches of the target, 90 per-
cent within 8 inches, and 95 percent within a foot.
Knowing both the location of the target and the accu-
racy of the shooter allows us to specify how many of her
100 shots are likely to land in a particular region.

CIs should have an important role in courts’

deliberations about whether the methods used are

reliable enough to support an expert’s conclusions.

Now assume that the same shooter takes a single
shot at the target; assume further that we cannot see the
target at all, but have to figure out where it is from
where that single shot landed. In this case, we still

know that 95 percent of her shots land within a foot of
the target—wherever it might be. By drawing a one-foot
radius circle around the mark, then, we know that 19
out of 20 times, the circle we draw will include the tar-
get. Of course, once we’ve drawn the circle, there’s no
sense in which it ‘probably’ or ‘likely’ contains the
target—the target is either in it or not. Rather, what we
know is that if we were to repeat this process of draw-
ing a one-foot radius circle around each of her shots, 95
percent of those different circles would include the tar-
get.

The circles in this example correspond to CIs. As with
the target shooter, in the statistical context we know
that an individual sample (shot) is very unlikely to equal
the population value (target). But, just as with the
shooting example, we can gauge the accuracy of our
sampling process, i.e., we can estimate the proportion
of a large set of samples that will fall within a certain
distance of the population value. So, for instance, as-
sume we know that 95 percent of relative risk estimates
will fall within 0.4 of the (unknown) true relative risk
value.3 If a sample shows a relative risk of 1.5, then, we
define the 95 percent confidence interval as 1.5 plus or
minus 0.4. As in the shooting example, this does not
mean the probability that the true value falls in that in-
terval is 0.95: It’s either in the interval or it isn’t. What
it means, rather, is that by repeatedly applying this pro-
cedure — taking a new sample, constructing a new CI,
and repeating — 95 percent of the resulting CIs would
include the true value.

As this suggests, the key to constructing CIs is know-
ing how accurate our sampling procedure is despite not
knowing the truth about the population. Accuracy of a
sampling procedure can be estimated in the absence of
the population value because of a key theorem of statis-
tics — the central limit theorem. This theorem holds
that if sample studies were repeated, the distribution of
the results would be bell-shaped, with the population
value being the highest point of the bell curve. The
theorem further implies that as the number of observa-
tions in the sample increases, the distribution of
samples becomes more concentrated around the popu-
lation value. Constraints of time and money prevent sci-
entists from repeating their observations over and
again, but the central limit theorem allows CIs to be cal-
culated from any single sample study using the math-
ematics of the bell curve.4

The bottom line is that CIs give us a means of telling
what range of possible population values are ‘‘statisti-
cally consistent’’ with the sample. The most important
thing to understand about CIs is that they do not tell us
anything about where the population value falls within
the interval (if, indeed, it does at all). Rather than rule
in results as correct, the purpose of CIs is rule out hy-

1 Wonnacott and Wonnacott, Introductory Statistics for
Business and Economics, 4th ed. (1990) at 25.

2 In re Bextra & Celebrex, N.Y.L.J. Feb. 8, 2008 at 29 (col.1),
762000/2006 (Sup. Ct. N.Y. County, Jan. 7, 2008); In re Bextra
& Celebrex Marketing Sales Practices & Prods. Liab. Litig.,
524 F. Supp. 2d 1166 (N.D. Cal. 2007).

3 Relative risk is ratio of the risk of an event (e.g., injury)
occurring in a population exposed to a factor X and the risk of
the same event occurring in a non-exposed population. So, if a
study showed that 27 out of a sample of 153 exposed persons
exposed to X developed injury, but only 9 out of 97 non-
exposed persons developed the injury, the relative risk = (27/
153) / (9/97) = 1.90.

4 The theorem states that, for a random sample of n inde-
pendent and identically distributed quantities, the distribution
of the sample mean approximates a bell-shaped ‘‘Normal’’ dis-
tribution with a mean equal to the (unknown) population mean
µ and a standard error of ó/ n, where ó is the population stan-
dard deviation.
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potheses that are inconsistent with the sample. So, for
example, if it is hypothesized that exposure to sub-
stance X causes injury Y, but a study shows a relative
risk of 1.4 with a 95% CI of ± 0.5, we can say that rela-
tive risks below 0.9 and above 1.9 are statistically incon-
sistent with the sample, since we know that the proce-
dure we used to construct this CI will cover the true
value 19 out of 20 times. On the other hand, we cannot
rule out the possibility that the true relative risk is 1,
since this is statistically consistent with the sample.

Three Fallacies About Confidence Intervals
Confidence intervals are delicate things — they can

easily be mishandled and distorted. It is essential to
note that the probability associated with a CI does not
tell us what the probability is that a sample result
equals the true population value. Rather, the probabil-
ity relating to a 95% CI refers to the proportion of times
— 19 out of 20 — that repeatedly sampling the popula-
tion would yield CIs that would include the true popula-
tion value. But any particular CI either includes the true
value or it does not: a CI is not, then, a basis for assign-
ing an intermediate probability to any particular value.
So, for example, one cannot conclude that because a
95% CI excludes a relative risk of 1.0 that the probabil-
ity that the relative risk is 1.0 is less than 5%.

In the courtroom, of course, that is just the kind of
probability one really wants to know, since burdens of
production and persuasion are couched in terms of the
probability of various claims. Not surprisingly, then,
one common fallacy is to treat a CI as if it were the
probability of some hypothesis or assertion. In one
case, a Texas court determining whether a defendant
was exempt from execution by virtue of mental retarda-
tion was presented with IQ measurements of 72 and 74,
each with a 95% CI of ±5 points. The criterion for sig-
nificantly subaverage intellectual functioning was an IQ
of 70 or below. Faced with a disagreement by the ex-
perts over whether to consider the CIs in determining if
the defendant met the standard, the trial court ulti-
mately decided to disregard the CIs, reasoning that
‘‘[t]his statistical 95% confidence interval may not be an
entirely appropriate measurement when the burden of
proof is preponderance of the evidence, not a 95% con-
fidence burden.’’ Ex parte Briseno, 135 S.W.3d 1, 14
(Tex. Crim. App. 2004).

This suggests the court assumed that the 95% CI was
somehow related to the probability that the defendant’s

IQ was above 70, and decided to ignore the CIs because
that would set too high a bar for the state to show he
was eligible for execution. Properly understood, how-
ever, the CIs associated with the IQ measurements tell
us only about the reliability of the method of measure-
ment, i.e., that in repeated use of that method, the sub-
ject’s actual IQ will fall within the CI 95% of the time.
One should take the fact that the CI excludes certain
values as reason to conclude the data are not consistent
with those values. But that does not imply anything
about the probability of values either inside or outside
the CI.

Another fallacy involving CIs is that values in the
middle of the CI are somehow better supported or more
probable than values near the extremes. For instance,
in DeLuca v. Merrell Dow Pharrmaceuticals Inc., 911
F.2d 941 (3d Cir. 1990), the court quoted an expert’s
claim that ‘‘it is much more likely that the [true value]
. . . is located centrally within an interval than it is that
the parameter is located near the limits of the interval.’’
Id. at 948. This interpretation misconstrues the notion
of a CI. A CI can be calculated because, thanks to the
central limit theorem, we know something about how
sample results are generally distributed around the true
population value. But we can’t know where any single
sample result falls relative to the true value; lacking that
knowledge, we have no way to tell where in a particular
CI the true value is likely to be — assuming the CI cov-
ers the true value at all.

Finally, it is sometimes suggested that CIs can be ag-
gregated to justify conclusions that none of the CIs in-
dividually would support. For instance, in the death
penalty case referred to above, experts disagreed over
whether the 95% CIs for the individual IQ measure-
ments were relevant, given that there were two mea-
surements that agreed. Ex parte Briseno, at 14. Under-
lying this disagreement appears to be the assumption
that combining estimates obviates the need to refer to
CIs when drawing inferences from those estimates.

Under Daubert, one factor for a court to consider

in deciding whether that reliability condition has

been met is the known or potential rate of error of

the methods used.

A less extreme version of this position is that of the
expert cited in DeLuca, who recommended focusing on
where the central points of CIs obtained from different
studies or measurements overlap. It is tempting to con-
clude that if the central portions of several different CIs
overlap, that should be evidence that the true value falls
in the area of overlap. That is, on a conventional inter-
pretation, 95% CIs for the relative risk obtained from
three separate studies that span (0.99, 2.9), (0.47, 3.7),
and (0.81, 3.3) would not exclude the possibility that the
relative risk is 1.0. The alternative view considered here
focuses on the grouping of the three CIs around a rela-
tive risk of 2.0 and concludes that those ‘‘collective
data’’ support the claim that the relative risk is greater
than 1.0, despite the fact that none of the CIs excludes
a relative risk of 1.0.
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Note first that this approach presumes that there is
some reason to focus on the central areas of the CIs.
There is no basis for that. (See fallacy two, supra.) In
addition, the claim that the coincidence of the CIs is evi-
dence for a particular value obscures the difference be-
tween the probability assigned to a CI and the probabil-
ity that a value in or out of that CI is true. (See fallacy
one, supra.) Finally, the assumption implicit in this view
that there is a meaningful way to combine different CIs
conflicts with another basic feature of the rationale un-
derlying CIs — i.e., that the probability assigned to a
particular CI depends on the particular method used to
construct it. It may be that the observations from mul-
tiple studies can be aggregated and allow for a new es-
timate and calculation of a new CI (so-called ‘‘meta-
analysis’’).5 That, however, is quite different from as-
suming that one can simply look at where several
different CIs overlap and draw inferences that none of
those CIs would support individually.

A Role for Confidence Intervals in Litigation
The three fallacies described above arise out of a con-

viction that statistical methods must generate probabili-
ties for different theories or hypotheses. In part, this
conviction rests on the traditional role that references
to probability have played in court — e.g., the probabil-
ity that the exposure caused the disease or the probabil-
ity of guilt. Since those issues are often put in terms of
probabilities, it is tempting to assume that other refer-
ences to probability must be connected to those issues
as well. The discussion above was intended to help re-
sist that temptation.

But if it is a mistake to treat statistical concepts like
CIs as a means of assigning probabilities to hypotheses,
what role should they have in court? One role is in
courts’ assessment of the scientific foundations of ex-
pert testimony. Federal Rule of Evidence 702 requires,
among other things, that expert testimony be ‘‘the prod-
uct of reliable principles and methods.’’ Under Daubert,
one factor for a court to consider in deciding whether
that reliability condition has been met is the known or
potential rate of error of the methods used. As ex-
plained above, a CI is essentially a measure of the reli-
ability of a method of inference, in that it provides a
means of identifying the effects of random noise on in-
ferences. In addition, the probability assigned to a CI
quite literally provides an error rate — i.e., the propor-
tion of applications in which the method will succeed
(by including the true value) and fail (by excluding that
true value).

CIs, then, should have an important role in courts’ de-
liberations about whether the methods used are reliable
enough to support an expert’s conclusions. This is pre-
cisely the role given to CIs in the Bextra cases cited. So,
unlike the Ex parte Briseno court, Justice Kornreich
correctly recognized that a CI is not related to the ‘‘bur-
den of proof’’ in the legal sense. Instead, it is a method
used ‘‘to gauge the reliability’’ of the methods used to
draw an inference.6 Courts should, however, be wary of
allowing those considerations of reliability alone to be
used to convince fact-finders about the probability that
a claim about causes or liability is true. As the fallacies
noted above indicate, statistical methods are novel
enough to pose difficulties for both litigators and
judges. Learning something about the logic of CIs and
other statistical methods that underwrite expert scien-
tific testimony is essential for both courts and litigators
to put those methods to their proper use.5 On techniques of meta-analysis, and controversy amongst

epidemiologists as to the worth of meta-analysis, see Sander
Greenland, ‘‘Meta-analysis,’’ in Kenneth J. Rothman & Sander
Greenland, Modern Epidemiology, 2d. ed (1998) at 643-73. 6 In re Bextra & Celebrex, N.Y.L.J. Feb. 8, 2008 at 29 (col.3).
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